Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Circuits Syst ; 16(6): 1057-1074, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36417722

RESUMO

The article presents a fully integrated multimodal and multifunctional CMOS biosensing/actuating array chip and system for multi-dimensional cellular/tissue characterization. The CMOS chip supports up to 1,568 simultaneous parallel readout channels across 21,952 individually addressable multimodal pixels with 13 µm × 13 µm 2-D pixel pitch along with 1,568 Pt reference electrodes. These features allow the CMOS array chip to perform multimodal physiological measurements on living cell/tissue samples with both high throughput and single-cell resolution. Each pixel supports three sensing and one actuating modalities, each reconfigurable for different functionalities, in the form of full array (FA) or fast scan (FS) voltage recording schemes, bright/dim optical detection, 2-/4-point impedance sensing (ZS), and biphasic current stimulation (BCS) with adjustable stimulation area for single-cell or tissue-level stimulation. Each multi-modal pixel contains an 8.84 µm × 11 µm Pt electrode, 4.16 µm × 7.2 µm photodiode (PD), and in-pixel circuits for PD measurements and pixel selection. The chip is fabricated in a standard 130nm BiCMOS process as a proof of concept. The on-chip electrodes are constructed by unique design and in-house post-CMOS fabrication processes, including a critical Al shorting of all pixels during fabrication and Al etching after fabrication that ensures a high-yield planar electrode array on CMOS with high biocompatibility and long-term measurement reliability. For demonstration, extensive biological testing is performed with human and mouse progenitor cells, in which multidimensional biophysiological data are acquired for comprehensive cellular characterization.


Assuntos
Técnicas Biossensoriais , Camundongos , Animais , Humanos , Reprodutibilidade dos Testes , Eletrodos , Semicondutores
2.
Curr Pharm Des ; 24(45): 5367-5374, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30734672

RESUMO

The role of endovascular interventions has progressed rapidly over the past several decades. While animal models have long-served as the mainstay for the advancement of this field, the use of in vitro models has become increasingly widely adopted with recent advances in engineering technologies. Here, we review the strategies, mainly including bioprinting and microfabrication, which allow for fabrication of biomimetic vascular models that will potentially serve to supplement the conventional animal models for convenient investigations of endovascular interventions. Besides normal blood vessels, those in diseased states, such as thrombosis, may also be modeled by integrating cues that simulate the microenvironment of vascular disorders. These novel engineering strategies for the development of biomimetic in vitro vascular structures will possibly enable unconventional means of studying complex endovascular intervention problems that are otherwise hard to address using existing models.


Assuntos
Bioengenharia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos da radiação , Modelos Biológicos , Radiologia Intervencionista , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...